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The method described in [l-4] for solving the Hilbert-Riemann boundary value problems posed for a finite 
number of contours in a complex plane is extended to periodic problems. Mixed periodic problems of the 

static and stationary dynamic theory of elasticity for an isotropic and orthotropic half-plane and a composite 

plane that can be reduced to Hilbert-Riemann problems and solved in quadratures, using the method in 

question, are considered. In particular, problems concerned with a periodic system of punches with sections 
of complete adhesion and detachment pressing on an elastic half-plane are solved. 

1. LET L and M be two systems of smooth contours in the plane of the complex variable z = x + iy 

that lie in the strip 0s Rez<2T. 
The problem of determining a piecewise analytic periodic function Q(z) [5j from the boundary 

conditions 

Im [pf (4 9* (41 = fit (4, pf (+)# 0, x E L V-1) 

9+(x) = G(49-(3$+47(4, REM (1.2) 

extended by periodicity to the whole complex plane with period HIT will be referred to as the 
combined periodic Hilbert-Riemann boundary-value problem. 

Below we shall consider a special case of this problem, which is important in applications. 
Namely, we shall consider the case when L = L1 U L*, M = M1 Ukf*, the contour L consists of 
intervals (Q, bk) (k = 1, 2, . . . , N), M’ consists of intervals [Q, tk] (k = 1,2, . . . , Q) on the real 
axis 0<a1<b1<a2<. . . <bN<2r, O<sl<tl<sT<. . .-qj<2n, LUM=[O, 2?l), LflM=O, 
G(x)= -G=const,withG>OforxEM’,G(x)= lforxEM2,andp*(x)=p(x)isareal-valued 
function on L1 and a purely imaginary function on L2. Without loss of generality, we can set 
p (x) = 1 for x = L’ and p (n) = i for x E L2. Following [4], we shall assume that every boundary point 
of L must belong to L unless it is a boundary point of Ml. 

Let each interval (uk, bk) contain Sk internal nodal points x = dkl, where dkl< dk,l+ 1, dividing (Q , 
bk) into intervals that belong to L1 or L *. The function p(n) has a discontinuity at each of these 
points. The total number of internal nodes on L is equal to S. The functionsf’(x) and g(x) satisfy 
the Hiilder condition. 

We shall seek a solution of problem (1.1) and (1.2) in the largest class of functions bounded at 
infinity and integrable at each node of L and M. 

Taking into account the automorphy properties, we shall seek the canonical solution of the 
corresponding homogeneous periodic problem 

in the form 

Im [p (x)0* (x)1 = 0, x E L 

9+ (x) = -G9- (x), x E M’ 

(1.3) 

(1.4) 

X (2) = 2 (2) ei*@) fi [S (2 - bj)]-al c [S (2 - cl)}+f, S (2) = sin+ (1.5) 
j=1 1=1 
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Here Z(z) is the canonical solution of the periodic Reimann problem (1.4), ci are complex 
numbers such that O<Recj<2n and ImCj#O; aj and pj are integers, K = E {WV}, E {t} is the 
integer part of t, G(z) is a solution of the periodic Dirichlet problem 

Re I#* (z) = h* (z), z tz L (1.6) 

N 

hf(2z) = nn,f - are Z* (4 + j;~ [aj w3 S (5 - bj) + Bj are S (z - cd* + 

+~~(z)+1/2n(1-rr), zcz!Lrn(uk,bk), k=l,2 ,..., N, r=1,2 (1.7) 

bounded at each of the nodes and at infinity, IZ~* are integers, m* (x) are integer-valued functions 
which may have jumps at x = dkl + i0, m*(ak) = 0, and 0 s argS(z) s 2n. 

Since S (z + 21r) = -S(z), the periodicity condition for q(z) imposes certain restrictions on the 
choice of Z(z) and aj and pi. As will be seen later, to construct the general solution of problem 
(1. l), (1.2) in the required class, one can use the canonical solution with arbitrary behaviour at the 
nodes. It should be mentioned that, as in [3, 41 and unlike the Riemann problem [5], no canonical 
solution with given arbitrary behaviour at the nodes can be constructed for the Hilbert-Riemann 
problem. 

Employing the theory of boundary -value problems for automorphic functions [5,6], the function 
Z(z), which is periodic along with the argument of its values, can be written in the form 

(1.8) 

T (z) = ctg (l/&, y = ‘l,n-* In G 

The Dirichlet problem (1.6), (1.7) can now be made periodic if one introduces any closure 
condition. For example, 

2K-1 

@2K = - 2 Pjvjlaj (1.9) 
j=r 

The solution of problem (1.6), (1.7) can also be constructed on the basis of the theory of [5,6]: 

h+ ‘;+;j;- (j) H (t - z) dt + & s [h+ (t) -h- (t)] T (t - z) dt (1.10) 
L. 

Y (2) = fi [s(Z-qJS(Z-b~)]~, Y(z)-f3xp(&l’12iNz), z--+~ioo (1.11) 
k=l 

H (z) = IS @)I-, N = 2p + 1; H (z) = T (z), N = 2p; 

P = 0, 1, . . . (1.12) 

According to (1.10) and (1.11)) if N> 1, then the boundedness condition for G(z) at infinity leads 
to the following system of N- 1 real equations: 

S ‘+ “$(;; @) P, (t) dt = 0, n = 1,2, . . ., K 
r, 

(1.13) 

where P,(r) = exp[i(n-%)t] (if N is odd) and P,,(f) = exp[i(n- l)t] (if N is even), in which the 
integral numbers MJ~+ = nj+ + nj- (i = 1, 2, . . . , N) and the complex numbers cj (i = 1, 2, . . . , 
N- 1) are unknown. This system has at least one solution [3, 71 such that the affixes of cj lie on 
curves that have end-points at Uj, bj and are contained in one of the half-planes y 3 0 or y i 0. 

The integers aj, pj and Wj- = nj+ - nj- as well as the complex number cN (for an even number N) 
will remain undetermined for the time being, which gives some freedom in constructing X(z). 
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We fix the numbers, assuming ~.j* =: Bj- = nj, CN = 0, ajsO+ and @i I= (-ly, j = I, 2, . . . , LX. 
Then wit = 2ni and condition (1.9) is satisfied. 

We substitute these numbers into flS>, (1.7) and (f.lO), and we change the variable of 
integration to pass from integration over the intervals [uk, bk ] to integration over the arcs of a unit 
circle in the auxiliary complex plane of w = 8. Following [2], we change the order of integration in 
the first integral in (1.10). After some elementary transformations, the desired canonical solution 
takes the form 

Moreover, the system of equations (1.13) also becomes somewhat simpler: 

The function X(z) is periodic, bounded at infinity and has simple poles at t = Czj and zeros at 
z=c2j--l,wherej=1,2, ..,K. 

The asymptotic form of X(z) at any node can be written as X(z) = O[(z- d)‘], where 5 = ek for 
z=s~,5=~~forz=t~,5=Xkforz=cak,5=YRforz=baand5=yk;,rforz=dk,+iO. 

In the absence of any common points of L and lMf, using estrmates of behaviour of the 
Cauchy-type integrab at the nodes of the lines of integration [S], we get 

(1.16) 

Setting yk,* = -r/2 and taking into account that ~~~~,~ = +%z, m’fnk) = 0 and 

m* (d/Q+ 0) = F?lr WC,&1 - O), we obtain the following recursion relation for calculating the values 
of pn” (r) on (ak ) bk): 

?32* (& Jr 0) = m;t: (d&J - 01 + E (0 wdl -I- “4 rt */a 

From this and (1.16) it follows that vk = 1/2s. 
If the end-points of any pair of intervals fq, Q] C M’ and (a+, 6,) CL coincide with one another, 

then, as in [2], the canonical solution ceases ta oscillate in the neighbourhood of the common point 
of the intervals, and so eI = V, = %(S, - 1) for SJ = b, , and a1 = h, = - i1/2 for tr = a,. The fact that the 
canonical solution does not oscillate any longer enables one to describe a model of detachment by 
introducing a section of attachment with slippage adjoining the section of complete adhesion. 

Passing to the construction of the general solution of the Sunday-value problem in the class of 
piecewise analytic periodic functions specified above, we consider the function 
F(z) = [X(z)]-‘@(z). This periodic function satisfies the boundary conditions 
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Im Ff (4 = P (x)[p (x)X* (5)1-f, x E L 

F+ (4 - F- (x) = g (x) LX+ (x)1+, x E M 
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(1.17) 

(1.18) 

and is bounded at infinity. 
We set 

F (4 = F, (4 + F, (4, F, (4 = -& s, $$T (t-z)& (1.19) 

Then F2 (z) is a solution of the periodic Dirichlet problem 

Im Faf (5) = f.$ (z), fs* (z) = ‘f* (z)[p (z)X* (s)P - ImF, (4, 5 E L (1.20) 

It can also be constructed on the basis of the theory of boundary-value problems for automorphic 
functions. By analogy with [3], taking into account that the function has poles with unknown 
principal parts at z = c2k-l (k = 1,2, . . . , K) and z = tk (k = 1, 2, . . . , Q), we find that 

iA?+ 0) + fs- U)l yo (2) 
yo+ (0 + fi+(t)-fat)} T (t--z)dt + (1.21) 

N 

+F,(z)+ F,(z), Ye(z) = Y-‘(z) n S(Z-dk) 
k=l 

E3 (‘) = f? [Akl + iAkOY, (z)] i” (Z-tk) + -+ F {B, [i + Y,” (cf$c-l) y (z)] x 
k=f k=f 

XT (z - %k-1) + Bk [ 1 - y,_ ('%k-1) y (z)] T (2 - Esk-1)}, Bk = Bkl + iBka 

N pk’ 

E~(z) =c~ + 2 2 ckj [T (Z-bk)]-‘+ @V+&(Z) Y-‘(Z) ii_ [S(z-bk)]qk’X 
k=l j-1 k=l 

x 3 S(Z-aa,*), 

‘AN 

QN(Z) = Do f 2 {&cos kz +& Sin kz}, N =2p 
n-1 k=l 

%(N--1) 

QN (2) 5 kzo @kl COS (fc i- ‘/d 2 f Dk, sin (k f 1/2) z), A’ = 2p -I- 1, 

p=o,i,... 

Pk’ = PR, qh’ = qk (b ? M’); pi = qt,, qk’ = ph - 1 (b/a 3 bk* E M’) 

pk = WI, (Sk + 1% q/s = E {ilgSk}, S, = S - R. - RI 

Here an* (n = 1, . . . , Ro) and b,* (n = 1, . . . , RI) are the boundary points ck and bk of L that 
belongtoM1,&(k= 1,. . . , N) form the iv-element set of notes of L, which contains all the points 
U,* and A,, B,, ckj, C,J, & are real COIlStaIltS. 

The number of arbitrary constants in the resulting solution is equal to 
2K+ N+ 2Q - R,, -RI + S + 2. 2K of these constants are required to remove the poles of F(z) at 
z = c2&_l by solving the system of equations F(C2k_1) = 0, where k = 1, 2, . . . , K. 

Therefore the general solution of the combined periodic Hilbert-Riemann problem contains 
N+2Q - Ro-RI +S+ 2 arbitrary real constants. It corresponds to the highest degree of the 
integrable singularity at each node z = d and has the form a(z) = 0 [(z - #] with Re 5 = - %. 

We remark that the general solution of the form (1.19), (1.21) and (1.14) contains the least 
possible number of arbitrary constants and so it involves the least number of equations in order to 
remove the poles. 

2. The combined periodic Dirichlet-Riemann boundary-value problem is determined by (1.1) 
when p (x)=1, xE L and L2 is not present. Then, as before, the canonical solution of the problem 
can be expressed by (1.14) with 
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(2-l) 

It has oscillating singularities for z = sk and a zero of order l/z - iy for z = fk , and is bounded at 
z = ak , 2 = bk andat infinity. 

The general solution of the problem in the class of functions that have an integrable singularity at 
each node can be expressed by means of the formulas of Sec. 1 for Pk = qk = 0. When the poles 
z = c2k-l are removed, there remain N + 2Q - R0 - R1 + 2 arbitrary constants. 

3. There are two classes of problems in the theory of elasticity for orthotropic or isotropic elastic 
media under the conditions of statics or stationary subsonic motion which can be reduced to the 
periodic Hilbert-Riemann or Dirichlet-Riemann problem considered above. The former class 
includes problems of contact between an elastic half-plane and a periodic system of linked, partially 
or completely detached punches, and flexible cover-plates. The latter class includes problems 
concerned with deformations of an elastic plane that consists of two half-planes with distinct elastic 
characteristics weakened along the line of bonding by a periodic system of gaps. There are 
alternating segments of free surface and segments of full adhesion to the punches, slippage contact, 
and contact with smooth punches and inextensible filaments placed in arbitrary order on the edges 
of the gaps in a one-period strip. 

For a finite number of punches, cover plates, and cuts forming the contours L and M, the above 
problems have been solved in [l-4, 81 by reduction to the Hilbert-Riemann problem for one or 
more complex potentials. The form of the solution of each of these problems can be preserved in the 
periodic case. It is then obvious that all the coefficients of the Hilbert-Riemann problems will 
remain the same and only the contours L and M will now be periodically repeated in (1.1) and (1.2). 

As an illustration, we will consider the periodic contact problem for an elastic isotropic half-plane 
- OQ Cx < CQ, y t0 under static conditions. Let L,, r = 1, 2, 3 be the systems of intervals (ak2, bk2), 
k=l, 2, . ..) k, on the real axis, let L4 be the complement of L1 U I-‘2 U L3 to [0, HIT), and let 
Lk n LI = 0, for k# 1. Let the half-plane be in full contact with the punches in Lx, in contact with 
slippage with the punches in L 2, and in contact with flexible cover-plates in L3, and let the normal 
and shear stress be given on L4. 

We can write down the boundary conditions 

u’ (2) + iv’ (2) = go (z), go (z) = go1 tz) + ig,, (z), x E L1 (3.1) 

LJ’ (2) = ug (x), -rxu (x) = 0, x E L, (3.2) 

u’ (x) = z&o (Z), uy (2) = 0, x E La (3.3) 

c’, (x) = oo (x)7 r,y (x) = 70 (x)9 3 E L, (3.4) 

for the problem within one period. Here we assume that each of the given functions satisfies the 
Holder condition. The apostrophe denotes a derivative with respect to i. 

We shall seek a solution of the problem in Muskhelishvili’s form [9]: 

% - izxy = CD (2) - a (Z) + (2 - fjz5-q) (3.5) 

2p (U’ + iu’) = X0 (2) + @ (Z) - (2 - Z)_(z) 

CD (2) = Vq (US,” + oym) + 2ip (x + 1)-W + 0 (I), 2 -+ -ioo (3.6) 

where x = 3 -4v, Y and IJ, are Poisson’s ratio and the shear modulus of the medium of the 
half-plane, a,,- and 7Xym are the normal and shear stresses, which penetrate to infinity, 

m 
WY - i7_, = l/&-l (Y - ix), (X, Y) is the principal vector of the external forces applied to the 
boundary within the period [0,2n] and a,” and Ed are the tension and twist at infinity (prescribing 
the values of these coefficients is equivalent to posing the periodicity or quasiperiodicity condition 
for the displacements). 
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Substituting (3.5) into (3.1)-(3.4), we obtain the combined periodic Hilbert-Riemann problem 
(l.l), (1.2) for Q(z), in which 

n!P = L1, w = L,, L’ = L,, Lz = L3, G T=T x 

g (s) = 2pg, (x2.), x f M’; g (2) = ---co (z) + iTo (z), x E flP 

f* (1) = 2p (x + yv, (4, z E L*; j* (z) = 2/A (x + I)-%A, (t), 5 E 1;s 

In the absence of condition (3.2) or (3.3), the boundary-value problem (l.l), (1.2) reduces to the 
combined Dirichlet-Riemann problem. 

The values of the principal vectors of the normal and shear forces applied to the punches and 
cover-plates, as well as tfre magnitudes of the jumps of the displacements (the tension) between 
them, serve as additional conditions which determine the solution of the problem of the theory of 
elasticity (3.1)-(3.4) according to the nature of the contact between the punches and cover-plates. 
The total number of these parameters, including the characteristics of the stress and strain state of 
the half-plane at infinity is obviously equal to the number of arbitrary constants in the solution of the 
corresponding combined boundary-value problem. 

4. Exampk 1. Suppose that, within one period, there are two flat punches that are in contact with the 
boundary of the half-plane. Let one of the punches be attached to the plane in [a, b], while the other one is in a 
state of contact with slippage in [c? d]. The boundary conditions for this problem can be described by (3.11, 
(3.2) and (3.4) for gO(x ) = Y&X) = q(x) = Q(X) ‘0, Lz = [a, b], and L2 = [c, d]. The periodic version of the 
problem has been discussed in [2]. 

The canonical solution of the resulting D~~ch~et-~emann problem can be constructed from (1.14) and (2.1) 
forN=l,sl=a,tl=b,al=c,bt=d,nl=O.Wehave 

x (2) = ,iq CZ) v’s; 

b 
PY (2) . 

I 

dt 
) q (2) 7.= - ----y-- Y (t) s (t - z) 

Y (2) = I/s (2 - c)S (2 - d), Y(t) = - I/s (c -l)S (d ‘- t), t fz [a, b] 
(4.1) 

Evaluating the integral in (2.7) by reducing it to an integral in the w = eir plane that is listed in tabIes, after 
some reduction we get 

Next, according to Sec. 2 and (1.19), (1.21), we have 

(4.3) 

We substitute (4.3) into (4.1). On applying some trigonometric transformations, we can represent the general 
solution in the form 

,irp(o 
w4=1/s(z_u)s(z__) P(L) ; C iQ (4 

I’ s (2 - c) s (2 - dj I (4.4) 

P (~1 = A, cosliz (z - P*) $ A, sin’/, fz - it*), a* = z,‘2 (a -j- bf (4.5) 

Q (21 = C1 cos (2 - c*) + C2 sin fz - c*) + CS, c* = ‘I& (a -t b -I- c -I- d) 

where A; and Ci are new arbitrary real constants. 
In accordance with (4.41, (4.5), (4.2) and (3.5), we write down the values for the normal stress in the sJippage 

section : 
2 

UP (z) = - 0 (2) eh TO (2) 
Vs (2 -a)S(z--b) II P(z)shVo(r)+ ~+_+(d_q 1 (4.6) 

where, obviously, q@(x) 2 0 for xE fc, d]. 
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We now determine the arbitrary constants. By (3.5) and (3.6), the conditions at infinity give rise to the 
following system of linear algebraic equations with respect to Al, AZ, Ci , C, : 

[iA, -I- A, - 2 (iC, + C,)] exp (i&J = l/a (ax” $ uym) f 2ip (x + l)-leOD 

ItA, $ A, $ 2 (Xl + C&l exp (--i&J = r/Acrxm - 3/quyw - 2iu (X + l)-reoD - irzzoD 

& = cp (_ loo) = 2y ln[(V,id $ T/‘-& - & (I/_ -1 Veic __ ,iy-1] 

If the punches are connected with one another, then C, can be found from the condition 

(4.7) 

(4.8) 

\ 
‘u’(s)dx=O (4.9) 

b 

But if the punches can move independently without rotation and the external forces (X, Yi) and Y2 applied to 
[a, b] and [c, d]‘, respectively, are known, then one must integrate expression (4.6) for the contact stress under 
a slippage punch in order to determine C, : 

s uii (1) dJ = Y2 (4.10) 
<: 

Finally, we remark that the mechanical feasibility condition a ,GO for xE [c, d] imposes restrictions on the 
parameters of the geometry and the forces involved in the problem. 

5. Example 2. Let the end-points of L1 and L2 coincide with one another, which corresponds to the case when 
a periodic system of individual punches with detached edges is in contact with a half-plane. 

The canonical solution of the combined boundary-value problem can be expressed by the same formula 
(4.1), in which we obtain 

rp (z) = 2y In [I/S (d - b)S (t - a)(l’s (d - a)S (2 - c) + 

+ I/s (b - a)S (2 - d))_‘l 

p, = q (-_imj = y inif@ _ ,ib (y-p-Jz f ~~‘y/,lbj-il 

instead of (4.2) and (4.8) for c = b. 

(5.1) 

(5.2) 

Similar to (4.4), we represent the general solution of the problem in the form 

iQ (2) 
I/T) I (5.3) 

P (z) = A, COS*/~ (Z - a*) $ A, sin’/, (z - a*), a* = Ii, (a f b) 

Q (z) = Cl cos 1/z (z - b*) + C, sin’/, (z - b*), b* = Ii, (c -/- d) (5.4) 

The arbitrary constants can be determined from the conditions at infinity. From (.5.3), (5.4), and (3.6) we get 

(1’1 - I’*) =P ($JcJ = l4 ((TX 7o + oya ) -k 2ik (X f I)-Iem, V, = iA, -j- A, (5.5) 

(VI + V,) exp (-ipo) = 3,‘4Cf?10t - l,‘.,l(spm + 2ip (x + l)-lem + itsym, V, = C, - iC, 

Let there be only a vertical force applied to each punch and let there be no field at infinity. Then 

UY 
c0 = 1/ip-‘y, r 

XY 
m = c- = 0,” = 0, and, solving (5.5), we can find that (k = 1,2): 

8nVk = -QY, w1 = cos fl,, + 2i sin fi,,, w2 = 2 COP fIo + i sin fin (5.6) 

We write down the expressions for the contact stress in the slippage section XE [b, d]: 

Y 
O,(J)_ I- 

Im Il.‘1 (z) rh ~0 (I) HP 11.2 (Xl (.I1 TO (1.) 

4nI s (z---a) T/.9(1-b) -’ 
?- 

v s (d - .1.) 3 

q’,, (2) = y arc@ (is (b - n)S (d - z)]“‘[S (d - a)S (z - b)]-“.), 0 < ‘P” (5) < ‘/gq’ 

W, (z) = w1 cxp [l/,i (LZ - 41, W, (4 = wp cxp P/J (b* - 41 
__A :- rl__ __ll___:__ ___rz__ ..-r- L,. auk III tue auneswn stxxwn x t [a, DJ: 

(5.7) 

uy - itXU = (5.8) 
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The asymptotic form for either of these expressions at any nodal point has the form 
-- 

(Ju = uo + 0 (Ub-_, z”t, = K,,, [2JX (b - Z)]_“’ + 0 (1’ b - t), a!- b - 0 

[JY = K,, [2n (Z - b)]-“’ + u. + 0 (1/x - b), z --+ b + 0 

OY = K,, [2x (d - z)]-“’ + 0 (j”-d - z), x - d - 0 

(5.9) 

%b = 
K,,, (x- 1) 

x_,_ 1 3 (Jo= 
(x + 1) up, cos [% + ‘/a (d - a*)] 

837 J’xS (b -- a) S (d - b) 

K 
Ypz cos [a, - ‘/, (a - n)l 

IIb = 
(Xff)Yp1sill[0*-~-l/g(b-a)1 , 

4 I’nxS (b - a) 

h’ 
I(1 = 2vnnS(d-0) 

(5.10) 

Pke 
%i = wfi, k = 1, 2 

It follows from (5.8) that the contact stress is compressing in the entire slippage section [c, d] if the 
inequalities 

Y Im W, (x) c:; 0, Y Re Wz (x) d 0 (5.11) 

are satisfied. 
relations 

According to (5.10), the conditions K,b < 0 andKId< 0, which are necessary for (5.11), lead to the 

Y sin [0, f l/d (b - u)] < 0, Y cos 10, + ‘jr (d - aI1 < 0 (5.12) 

Conditions (5.12) will obviously be sufficient if the punches are short so that d- a621~. Here, by virtue of 
Saint-Venant’s principle, one can apply the results of [2], where a rigorous proof of the sufficiency is given. 

Nevertheless, the qualitative features of the solution mentioned in the discussion of the non-periodic case in 
[2] are also preserved in the general case of a periodic problem. 

If the length of the adhesion section is fixed, the trigonometric inequalities (5.11) restrict the possible length 
of the single contact section beneath the detached edge of a punch to the values from a denumerable set of 
descending intervals. 

If the inequalities (5.11) or (5.12) are not satisfied, a contact occurs in two or more sections of the part of the 
punch with a notch. 

The total length of the part with a notch can exceed that of the slippage section. Moreover, if Kid = 0, 
smooth adhesion of the contact surfaces occurs at x = d. 

According to (5.10) and (5.12), the normal stress intensity factor KIb is non-positive. Thus the gap of 
detachment can propagate only due to the shear stress. As it develops, the gap passes through a denumerable 
set of states characterized by the relations K nb = KIb = 0, If the lengths of the slippage and adhesion sections 
satisfy this condition, the gap is stable and its subsequent development can occur only due to some non-elastic 
factors (for example, plasticity, temperature, or corrosion). 

1. 

2. 

3 

4. 

5. 
6. 

7. 

8. 

9. 

REFERENCES 

NAKHMEIN Ye. L. and NULLER B. M., Some boundary-value problems and their applications in elasticity theory. Zzv. 
VNZZG im. Vedeneyeva 172,7-13,1984. 
NAKHMEIN Ye. L. and NULLER B. M., Contact between an elastic half-plane and a partially detached punch. Prikl. 
Mat. Mekh. 50,4,663-673, 1986. 
NAKHMEIN Ye. L. and NULLER 13. M., The pressure of a system of punches on an elastic half-plane under general 
conditions of contact adhesion and slippage. Prikl. Mat. Mekh. 52, 2, 284-293, 1988. 
NAKHMEIN Ye. L. and NULLER B. M., On the subsonic stationary motion of punches and flexible cover-plates on the 
boundary of an elastic half-plane and a composite plane. Prikl. Mat. Mekh. 53, 1, 134-144, 1989. 
GAKHOV F. D., Boundary Value Problems. Nauka, Moscow, 1977. 
NAKHMEIN Ye. L. and NULLER B. M., On a method for solving periodic contact problems for an elastic strip and an 
annulus. IN. Akad. Nauk SSSR, MTT 3,53-61,1976. 
SLEPYAN A. L., On the solvability of a system of nonlinear equations arising in the combined Hilbert-Riemann 
problem. Soobshch. Akuk. Nauk. Gruz. SSR 129,3,477-479, 1988. 
NAKHMEIN Ye. L. and NULLER B. M., Dynamic contact problems for an orthotropic elastic half-plane and a 
composite plane. Prikl. Mat. Mekh. 54,4,633-641, 1990. 
MUSKHELISHVILI N. I., Some Fundamental Problems in the Mathematical Theory of Elasticity. Nauka, Moscow, 1966. 

Translated by T.Z. 


